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Abstract

In the present work the natural convective heat and mass transfer in an asymmetric, trapezoidal enclosure is studied

numerically. Such a configuration is encountered in greenhouse-type solar stills, where natural convection in the

enclosed humid air due to vertical temperature and concentration gradients between the saline water and the transpar-

ent cover, plays a decisive role. In this double-diffusion problem, the relative magnitude of the thermal and the concen-

tration (or solutal) Rayleigh numbers, expressed by their ratio N is a key parameter. The two-dimensional flow

equations, expressed here in a stream function-vorticity (W � X) formulation, along with the energy and concentration

equations are solved. Due to the large values of the Rayleigh numbers encountered under realistic conditions

(107 6 Ra 6 1010), mostly turbulent flow conditions prevail. A two-equation, low-Reynolds number turbulence model

has thus been selected and a curvilinear coordinate system is employed, allowing for better matching of the computa-

tional grid to the enclosure geometry. The numerical solutions yield a multi-cellular flow field, with the number of cells

depending on the Rayleigh number for a fixed Lewis number and geometry. For a positive value of N (N = 1) the solu-

tion is qualitatively similar to the case with only thermal buoyancy present (N = 0). However, for negative values

(N = �1), more complex unsteady phenomena arise, having a different nature in the laminar and the turbulent flow

regime, which are both investigated. Correlations for the mean convective heat and mass transfer coefficients are

obtained for a wide range of Rayleigh numbers, and comparisons are made for the different values of N, showing lower

values and different rate of increase with Ra for N = �1.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in enclosed spaces of various

forms occupies a large portion of the heat transfer liter-
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ature, reflecting the large number of investigations on

the subject that have been undertaken over the years.

In the vast majority of cases, rectangular or cylindrical

geometries have been considered. A smaller number of

studies have considered the trapezoidal geometry, which

is encountered in several practical applications, such as

attic spaces in buildings [1], greenhouses [2] or sun

drying of crops [3]. Fundamental studies on natural con-

vection in trapezoidal enclosures of various forms
ed.
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Nomenclature

A dimensionless average height (or aspect

ratio) of the enclosure A = Hm/L

C vapor concentration (kg vapor/kg humid

air)

D mass diffusivity for vapor (m2/s)

g magnitude of the gravitational acceleration

(m/s2)

H maximum vertical height of the enclosure

(m)

H1 height of the vertical side walls of the enclo-

sure (m)

Hm average height of the enclosure Hm = 0.5 ·
(H + H1) (m)

J Jacobian of the coordinate transformation

matrix J = det(oxi/onj)
k turbulent kinetic energy non-dimensional-

ized by (a/L)2

L length of base of the enclosure (m)

Le lewis number Le = a/D = Sc/Pr

N ratio of buoyancy forces N = b*DC/bDT =

RaC/Ra

Nu Nusselt number averaged over a surface

Nu ¼
R 1
0
Nus ds

Nus local Nusselt number varying along a sur-

face Nus = (oh/on)w
Pr Prandtl number of air Pr = m/a
RaC concentration Rayleigh number based on

the enclosure base Ra = gb*DCL3/ma
Ra thermal Rayleigh number based on the

enclosure base Ra = gbDTL3/ma
Ram thermal Rayleigh number based on the aver-

age height Hm of the enclosure Ram ¼
gbDTH 3

m=ma ¼ A3Ra
Sc Schmidt number Sc = m/D
Sh Sherwood number averaged over a surface

Sh ¼
R 1
0
shs ds

Shs local Sherwood number varying along a sur-

face Shs = (oC/on)w
t physical time (s)

T local temperature (K)

x, y vertical and horizontal Cartesian coordinate

distance, respectively (m)

X, Y (or Xi) dimensionless vertical and horizontal

Cartesian coordinate distance, respectively,

X = x/L, Y = y/L

u, v vertical and horizontal Cartesian velocity

components, respectively (m/s)

U, V dimensionless Cartesian velocity compo-

nents (U,V) = (u/(a/L),v/(a/L))

Greek symbols

a thermal diffusivity of air (m2/s)

at Eddy diffusivity for heat

b volumetric Coefficient of thermal expansion

b � �(1/q)(oq/oT)p(K
�1)

b* volumetric coefficient of expansion with

concentration b* � �(1/q)(oq/oC)p (kg
�1)

DC vertical concentration difference DC = Cb �
Ct

DT vertical temperature difference DT = Tb � Tt

� rate of dissipation of the turbulent kinetic

energy, non-dimensionalized by (a/L)3/L
h dimensionless temperature h = (T � Tt)/DT
n, g (or nj) coordinates in the curvilinear (trans-

formed system)

m kinematic viscosity of air (m2/s)

mt turbulent viscosity (m2/s)

r�, rk Prandtl number for the turbulent kinetic

energy and its rate of dissipation respec-

tively

rC turbulent Schmidt number rC = D/at
rT turbulent Prandtl number rT = mt/at
s dimensionless time s = t/(L2/a)
W dimensionless stream function U = � oW/

oY, V = oW/oX

X dimensionless vorticity X = oV/oX � oU/oY

Subscripts

i initial value

b value of a variable at the bottom boundary

t value of a variable at the top boundary
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(including triangular ones as a special case) have been

presented by Poulikakos and Bejan [4], Lam et al. [5],

Lee [6], Perić [7], Salmun [8] and Kuyper and Hoog-

endoorn [9]. A particularly interesting area where such

a geometry is involved is the distillation of saline water

in greenhouse-type solar stills [10,11], where the process

is strongly influenced by the natural convective flow and

transport. Few researchers have presented results on the

associated flow and heat transfer problem, considering
either symmetric [12,13] or single-slope still geometries

[14]. In a recent study, Papanicolaou et al. [15] have pre-

sented numerical results for the flow and temperature

fields in an asymmetric greenhouse-type solar still and

demonstrated the effect of physical and geometric

parameters, typical during a 24-h cycle of operation.

In the space enclosed between the top inclined covers

and the surface of saline water humid air circulates,

therefore in addition to thermal effects there are also



Fig. 1. (a) Geometry of the enclosure under consideration with

characteristic dimensions and (b) grid in dimensionless

coordinates.
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buoyant forces arising from the density differences due

to gradients of the water vapor concentration. A more

realistic numerical simulation effort, therefore, can be

obtained if the air enclosed in the trapezoidal space is

taken as a binary mixture, thus giving rise to a problem

of double-diffusive (or thermosolutal) convection.

The fundamental problem of double-diffusive con-

vection in enclosures has received attention mostly over

the past decade. As far as rectangular enclosures are

concerned, results have been presented, among others,

by Wee et al. [16] and Béghein et al. [17]. The former

study considered both vertical and horizontal cavities

of aspect ratio 7 for the system air/water vapor, in an ef-

fort to simulate moisture transfer in building cavities.

Both numerical and experimental results were obtained

and correlations for the Nusselt and Sherwood numbers

in terms of Grashof number were derived. Béghein et al.

obtained steady-state numerical results for laminar flow

in an air-filled square cavity for different Lewis and Ray-

leigh numbers and both opposing and assisting flows. In

trapezoidal geometries, mostly numerical studies are

available, such as those by Dong and Ebadian [18] and

Boussaid et al. [19,20] in the laminar-flow regime and

by Van der Eyden et al. [21] in the turbulent flow regime.

In Ref. [18] the configuration was an enclosure with 75�
inclined side walls and horizontal top and bottom and

steady numerical solutions were obtained with lateral

thermal and solutal gradients for Pr = 7 and Le = 100

(aqueous solution) and both opposing and assisting

buoyancy forces. In Refs. [19,20], an enclosure with a

single inclined surface at the top was considered, at var-

ious angles of inclination and Lewis numbers, and in

which vertical temperature and concentration gradients

were imposed. The binary fluid was air/water vapor

and numerical results were obtained for assisting buoy-

ancy forces, the majority of which was at N = 1. For

thermal Rayleigh numbers (based on height)

RaP 2 · 105 periodic oscillations were observed, which

were damped at large times for up to Ra = 3 · 106 but

sustained beyond that value. The study by Van der

Eyden et al. [21] considered a mixture of two gases in

a trapezoidal enclosure with horizontal top and bottom

and inclined side walls at 45�, a configuration encoun-

tered in underground coal gasification. They presented

numerical results for the mixture argon/nitrogen with

Le = 1.16 and for turbulent flow at thermal Gr =

2.6 · 108 and N = 2.5, with gas injection from the bot-

tom and the side walls and compared with experimental

results. They also observed an oscillatory behavior at

these conditions.

Particularly interesting phenomena occur when the

two buoyancy forces, i.e., those due to thermal and sol-

utal effects, are opposing each other and the buoyancy

ratio N is negative. Such configurations, where the driv-

ing temperature are concentration gradients may be ap-

plied either in the horizontal or in the vertical direction,
are prone to instabilities and bifurcation phenomena. In

the case of rectangular enclosures and horizontally ap-

plied gradients, the studies by Ghorayeb and Mojtabi

[22], Xin et al. [23], Bergeon et al. [24] and Ghorayeb

et al. [25] have presented comprehensive results as far

as the nature of the bifurcations and the respective crit-

ical values for their onset. The influence of the aspect

ratio, Lewis number and angle of inclination have been

investigated. However, oscillatory phenomena have

been observed also for vertically imposed gradients in

rectangular geometries by Mamou et al. [26] and, as

already mentioned above, in trapezoidal geometries

[20,21]. This is the case in the present configuration as

well. The geometry and characteristic dimensions of

the solar still which gave the motivation for this work

are shown in Fig. 1a. Clearly, in the actual configuration

the physical phenomena involved are quite complex and

not all of them can be included in the present study.

Here the focus is on the fundamental problem of the

double-diffusive natural convection in such a geometry

and in identifying the basic phenomena that develop

due to the application of vertical temperature and con-

centration gradients and for buoyancy forces that are

either assisting or opposing each other. The study
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focuses mostly on the turbulent-flow regime, which is the

most common situation in the given practical applica-

tion and since this was also the case in the previous work

where only thermal buoyancy was present [15] and

which the present work aims at extending. However,

the unsteady phenomena that are present for N < 0,

especially in view of Refs. [20,22–25], and which corre-

spond to a specific mode of operation in a solar still as

will be explained below, made an extension into lower

Rayleigh numbers and laminar-flow computations

indinspensable for the sake of completeness of the study.
Table 1

Diffusion coefficients C/ and source terms S/ for variable / in

the generic transport equation, Eq. (2)

/ C/ S/

X Pra SB + SRS

h 1þ m�t ðPr=rTÞ 0

C 1=Leþ m�t ðPr=rCÞ 0

k Prð1þ m�t =rkÞ Pk + Gk � �

� Prð1þ m�t =r�Þ C1f1Pk(�/k) + C3Gk(�/k) � C2f2(�
2/k)
2. Mathematical model

2.1. Model equations

The mathematical model is based on the vorticity-

stream function formulation for the solution of the flow

field, coupled with the energy and concentration equa-

tions. In the turbulent- flow simulations the equations

for the turbulence variables k and � are also solved.

The vorticity-stream function method, although so far

not widely used for two-dimensional computations in

curvilinear coordinates, is still quite an attractive option

for natural convection problems, especially when the

pressure field itself is not of particular interest. The

model consists of the transformed Poisson-type stream

function equation:

B11

J2

o2W

on2
þ B22

J2

o2W
og2

þ 2
B12

J2

o2W
onog

þ P
oW
on

þ Q
oW
og

¼ �X

ð1Þ

along with the time-dependent transport equations for

the variables: X, h, C, K and �. These are of the convec-
tion–diffusion type and can be written in the following

common form:

J
o/
os

þ o

on
U 1/� C/

B11

J

o/
on

� �
þ o

og
U 2/� C/

B22

J

o/
og

� �

¼ o

on
C/

B12

J

o/
og

� �
þ o

og
C/

B21

J

o/
on

� �
þ JS/: ð2Þ

The present equations, in which the Dufour and

Soret effects have been neglected, arose through a series

of transformations of the derivatives from the Cartesian

Xi into the generalized (curvilinear) coordinate system

nj, following the procedure described by Ferziger and

Perić [27]. 1

In the above equations the following symbols have

been used [27]:
1 Where Y is here the horizontal distance and X the vertical.
Bmj ¼ b1jb1m þ b2jb2m;

U 1 ¼ b11U þ b21V ; U 2 ¼ b12U þ b22V ;

b11 ¼ oY
og

; b12 ¼ � oY
on

; b21 ¼ � oX
og

; b22 ¼ oX
on

:

The Cartesian velocity components are computed as

U ¼ oW
oY

¼ 1

J
b21 oW

on
þ b22 oW

og

� �
;

V ¼ � oW
oX

¼ � 1

J
b11 oW

on
þ b12 oW

og

� �
:

The form of the functions P and Q in Eq. (1), which are

the so-called control functions can be found in Ref. [15],

whereas the diffusion coefficient C/ and the source term

S/ for each variable of Eq. (2) are defined in Table 1.

The source term SRS in the vorticity equation arising

from the Reynolds stresses, along with its derivation

which is somewhat lengthy, may also be found in Ref.

[15] and is not repeated here for the sake of brevity.

The source term SB due to buoyancy forces has a new

component here owing to concentration gradient effects

and is equal to

SB ¼ �RaPr
1

J

� �
b21 oh

on
þ b22 oh

og

� �
þ N b21 oC

on
þ b22 oC

og

� �� �
:

ð3Þ
As far as the turbulence modeling is concerned, the

present approach is essentially of the TRANS (transient

Reynolds-averaged-Navier–Stokes) type, similar to the

one described by Hanjalić and Kenjeres̆ [28], except that

here a two-equation k–� model is used and no second

moments are modeled. In unsteady turbulent-flow simu-

lations, and particularly when large-scale or determinis-

tic unsteady phenomena are known to be present such

as, for instance, in Rayleigh–Bénard convection [28] or

vortex shedding [29], the time-dependent value of the

transported quantity U(t) may be thought of as com-

posed of the following three components:

UðtÞ ¼ �U|{z}
time-mean component

þ ~UðtÞ|{z}
time-periodic component

þ U0ðtÞ|ffl{zffl}
turbulent fluctuation

:

ð4Þ
The detailed form of quantities SRS and Pk involved in the

source terms may be found in Ref. [15].
a Note that in this particular case the contribution of m�t is

more conveniently included in the source term.
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The first two components are here incorporated into

the symbol / of Eq. (2), while the third one is treated by

the Reynolds averaging. The notation hUi(t) for the first
two components is often used and the arising new com-

ponent is called a phase-averaged or ensemble-averaged

[28,29] quantity. However, in the present case, since only

a portion of the entire set of turbulent-flow results are

unsteady while many of them are steady, the use of a

new symbol was not found necessary. It should never-

theless be kept in mind that whenever the numerical

solution yields unsteady results, the symbol for each var-

iable / in Eq. (2) or W in Eq. (1) stands for the sum of

the first two components of Eq. (4).

The turbulent viscosity is obtained from:

m�t ¼ CXflCl
k2

�
; ð5Þ

The turbulent fluxes for heat and mass transport are

computed from the standard gradient diffusion hypoth-

esis (SGDH) as follows:

�u0ih
0 ¼ m�t

rT

oh
oX i

� �
; �u0iC

0 ¼ m�t
rC

oC
oX i

� �
; ð6Þ

where here both the turbulent Prandtl number rT and

the turbulent Schmidt number rC are taken as constant

and their value is defined below.

Previous experience with turbulence models for natu-

ral convection has shown that when using the k–� model

in the standard form, overprediction of the heat transfer

from the wall is obtained and this could be improved

with the use of low-Reynolds terms in the model [30].

Therefore, the present code has mostly focused in incor-

porating low-Re models for turbulent-flow computa-

tions of natural convection, a comparative assessment

of which has been presented in a previous study [31].

The model of Launder and Sharma [32] has shown a

fairly good accuracy in that assessment, particularly as

far as the wall heat transfer is concerned, and was there-

fore selected for the computations in the earlier study of

the solar still problem where only thermal buoyancy ef-

fects were considered [15]. It was also used successfully

by van der Eyden et al. [21] in a double-diffusive natural

convection study and was therefore considered a good

choice for the present problem. The damping functions

appearing in Eq. (5) and in Table 1 are defined as

follows:

fl ¼ exp
�3:4

ð1:0þ Ret=50Þ2

" #
;

f1 ¼ 1:0; f 2 ¼ 1:0� 0:3 expð�Re2t Þ;

whereas the constants of the model are assigned the fol-

lowing values: Cl = 0.09, C1 = 1.44, C2 = 1.92, rk = 1.0,

r� = 1.3 and rT = rC = 0.9. For C3 the following expres-

sion is used: C3 = tanhjV/Uj [30] and the turbulence

Reynolds number in terms of dimensionless variables
is Ret = CX(k
2/�). A new term that arises here in the pro-

duction of turbulent kinetic energy Gk in this double-dif-

fusion case is the contribution of the concentration

(solutal) buoyancy forces. This term, in view of Eq.

(6), can be written in Cartesian coordinates as:

Gk ¼ �RaPr
m�t
rT

oh
oY

� RaC Pr
m�t
rC

oC
oY

¼ �RaPr
m�t
rT

oh
oY

þ N
m�t
rC

oC
oY

� �
; ð7Þ

and in the curvilinear coordinate system:

Gk ¼ �RaPr
1

J

� �
m�t
rT

b21 oh
on

þ b22 oh
og

� ��

þ N
m�t
rC

b21 oC
on

þ b22 oC
og

� ��
: ð8Þ
2.2. Boundary conditions

Non-slip, impermeable surfaces are taken at all sides,

with the vertical ones being adiabatic to both heat and

mass transfer, whereas the top and bottom surfaces

are isothermal and at constant concentration. Therefore

the boundary conditions can be written as

U ¼ V ¼ W ¼ 0 at all surfaces;

h ¼ C ¼ 0 and h ¼ C ¼ 1 at the top inclined and

bottom surfaces respectively;

oh
oX

¼ 1

J
b11oh

on

����
w

� b12oC
og

����
w

� �
¼ 0

on the vertical sidewalls;

oC
oX

¼ 1

J
b11oC

on

����
w

� b12oC
og

����
w

� �
¼ 0

on the vertical sidewalls: ð9Þ

The wall vorticity is given by the following

expression:

Xw ¼ 1

J
b11oV

on

����
w

� b21oU
on

����
w

� �
along the top inclined and bottom surfaces;

Xw ¼ 1

J
b12oV

og

����
w

� b22oU
og

����
w

� �
along the vertical side walls:

ð10Þ

For the turbulence variables in the Launder-Sharma

model the following values are specified at the wall:

kw ¼ 0; �w ¼ 2CX
o
ffiffiffi
k

p

on

 !2

w

¼ 2CX
kwþ1

ðDnÞ2
; ð11Þ

where Dn is the normal wall distance of the first node.



196 E. Papanicolaou, V. Belessiotis / International Journal of Heat and Mass Transfer 48 (2005) 191–209
3. Numerical scheme

3.1. General features

The finite-volume-based numerical procedure for

solving the equations for the flow field in the W � X for-

mulation along with the energy equation in a curvilinear

coordinate system nj has been described by Papani-

colaou et al. [15]. The transformed Poisson equation

for the stream function, Eq. (1), is solved by the succes-

sive over-relaxation (SOR) method, using a nine-point
Fig. 2. Trapezoidal enclosure of Boussaid et al. [20] with L/H = 2, a

used for comparisons. Parameters are: GrH = 8 · 105 (laminar flow), N

local Sherwood number at the bottom surface (lines) vs. the respectiv
stencil as opposed to the five-point stencil in Cartesian

coordinates. The discretized, time-dependent transport

equations of the general form expressed by Eq. (2) have

to be solved for an additional variable in this case, i.e.,

the concentration C. The time marching is achieved

by means of the alternating-implicit-direction (ADI)

method and the arising linear systems of equations are

solved using the Thomas or tridiagonal matrix algorithm

(TDMA) [27]. The high-order, bounded HLPA scheme

[33] was selected for the discretization of the convective

terms in the vorticity, energy and concentration equa-
n inclined top at h = C = 0 and horizontal bottom at h = C = 1

= 1.0. (a) Present grid, (b) streamlines for Le = 3, (c) computed

e results of Ref. [20] (points).



Fig. 3. Rectangular enclosure of Hanjalic et al. [35] with

L/H = 1.5, bottom heated and with adiabatic side walls used for

comparisons in turbulent flow. (a) Present grid, (b) computed

mean Nusselt number at the bottom surface (points) for air vs.

empirical correlations [36] (lines).
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tions, whereas the power-law scheme [34] was used for the

turbulence variables.

3.2. Computational grid-initialization

The curvilinear grid used in the present computations

is shown in Fig. 1b. Effort was made to generate a grid

which is as orthogonal as possible and with fine resolu-

tion near the solid surfaces, so that the thin boundary

layers expected are well resolved and the requirements

of the low-Re turbulence model are met (wall coordinate

y+ 6 1 at the first point from the wall). The grid was suc-

cessively refined from 61 · 61 to 91 · 91 and finally to

121 · 121, in all cases being non-uniform. The discrepan-

cies between the grid dimensions in terms of selected flow

and thermal quantities were compared, considering also

the CPU times required on a Pentium III, 600MHz proc-

essor. Between the two finer levels, the discrepancies in

turbulent flow (Ra = 109) were around 1% for the main

flow variables and the heat transfer and 2–4% for the tur-

bulence variables, while the CPU times required were

shorter by a factor of 2.5–3. Therefore the 91 · 91 grid

was finally selected as a good compromise for all the tur-

bulent-flow computations presented here, whereas in

laminar flow computations, the 61 · 61 non-uniform grid

was found adequate in providing grid independence.

Each computation is initialized by using the solution

at the immediate lower Rayleigh number as the input.

To obtain the solution at the lowest Rayleigh number

considered in turbulent flow (Ra = 107), the velocities,

the temperature and concentration are all set to zero ini-

tially, while for the turbulence variables a 1% turbulence

level was assumed. Using the non-dimensionalized

buoyancy velocity (Ub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
) as a characteristic

velocity, the turbulent kinetic energy k is obtained as

ki ¼ 0:012 � U 2
b. A dissipation length scale is taken from

l� = 0.03 · (L/2), yielding a value equal to 0.015 in

dimensionless terms. The set of initial values for the tur-

bulence variables is thus completed by taking �i ¼ k3=2i =l�
and computing the turbulent viscosity m�t;i from Eq. (5).

The maximum allowable time step for numerical stabil-

ity with the chosen grid was equal to 3.0 · 10�8 for most

cases, but at higher Rayleigh numbers it had to be re-

duced to 2.0 · 10�8 or 1.0 · 10�8. For cases where stea-

dy state was eventually attained, approximately 100,000

time steps were required.

3.3. Validation

In the case where thermal buoyancy alone was pre-

sent [15], the code was validated by comparing against

well established numerical solutions for laminar flow

in a symmmetric trapezoidal enclosure, differentially

heated from the sides. For the present case, similar

geometries were sought, preferably with consideration

of double-diffusion effects. Unfortunately, relevant
experimental and turbulent flow results suitable for com-

parison purposes are scarce and as the most suitable case

the numerical study of Boussaid et al. [20] for laminar

flow was selected. Essentially, their geometry may be

thought of as resembling the right part of the present

geometry, i.e., it has one inclined boundary at the top,

at an angle of 15�, horizontal bottom and vertical side

walls. Additionally, this case is very relevant in that

the driving temperature and concentration gradients

are also in the vertical direction with adiabatic vertical

side walls. The gradients are such that they give rise to

assisting buoyancy forces with N = 1. The geometry,

along with the corresponding grid used in the present

computations and which has the same dimensions as

in Ref. [20] (81 · 81) are shown in Fig. 2a. In Fig. 2b,

the computed streamlines using the present code for

Le = 3 are shown, representative of the flow structure

in the enclosure which qualitatively remains almost

invariable with Le. In 2c, the bottom surface Sherwood

number distribution is compared agadnst the results of

Ref. [20] for different Lewis numbers, Le = 1–5. Overall,

the agreement may be considered satisfactory,
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particularly up to Le = 3, except in the vicinity of the

right vertical wall where the values in Ref. [20] exhibit

a relatively strong dependence on Le. Particularly good

is the agreement in the location of the overall maxima

and minima in the distribution between the two solu-

tions. This indicates a good agreement in the location

and size of the flow cells, at the boundaries between

which these extreme values occur, a fact which may be

inferred by comparing with Fig. 2b. It should be noted

that here a boundary-fitted grid is used, while in Ref.

[20] the computations were done on a Cartesian grid

with a staircase approximation of the inclined boundary.
Fig. 4. Computed streamlines (left) and isoviscosity m�t lines (right) at s
109 (c) and 1010 (d).
As far as turbulence modeling, a detailed validation

with various models was presented in [31] for a differen-

tially side-heated cavity of aspect ratio H/L = 5, using

the Cartesian version of the present code. Here addi-

tional comparisons are made with the curvilinear version

of the code, for a horizontal cavity of aspect ratio L/

H = 1.5 and with a vertically imposed temperature gra-

dient (heating from below) as more closely related to

the problem under investigation. For this case, numeri-

cal results were presented by Hanjalic et al. [35] and

compared to Nusselt number correlations by different

researchers, given by Gebhart et al. [36]. The present re-
teady state for N = +1 in turbulent flow at Ra = 107 (a), 108 (b),
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sults are also compared with those correlations, namely

the ones by O�Toole and Silveston (OS), Dropkin and

Somerscales (DS) and Goldstein and Chu (GC), for air

at Rayleigh numbers Ra = 106–108 and using the Laun-

der and Sharma model which was selected for use in this

study. In Fig. 3, the computational grid, of dimensions

61 (vertical) · 81 (horizontal) is shown, along with the

plot of the computed, steady-state mean Nusselt number

at the bottom surface against the Rayleigh number. The

agreement is generally good, except at the highest Ray-

leigh number (Ra = 108), where the correlations also ex-

hibit discrepancies between one another and the present

result appears to follow the DS line closer. In general,
Fig. 5. Computed temperature (left) and concentration (right) contou

108 (b), 109 (c) and 1010 (d). Twenty levels plotted between 0 and 1.
the present values (6.89, 14.89 and 36.55 respectively

for the three Rayleigh numbers considered) are higher

than the values obtained by Hanjalic et al. [35] also with

the SGDH approach and closer to the values given by

the correlations.
4. Results and discussion

For the mixture air/water vapor, the value of the Sch-

midt number is Sc = 0.6 and thus Le = 0.86, whereas the

corresponding value qb* is equal to +0.61 at 25� and 1

atm [36]. Therefore the sign of N depends on the signs
rs at steady state for N = +1 in turbulent flow at Ra = 107 (a),
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of DT and DC. If they are the same, N > 0 and if they are

opposite, N < 0. In order to cover both these possibili-

ties, corresponding to the assisting and opposing buoy-

ancy forces respectively, two simple values were

selected, namely N = 1 and N = �1. Both situations,

but the latter case in particular, as has already been men-

tioned earlier, was known from previous studies to be

prone to unsteady, oscillatory behavior, starting at dis-

tinct, critical values of Ra. Early computations gave

indications of a similar behavior also in the present case

and it was found necessary to extend the range of inves-

tigation to lower values of Ra then those in Ref. [15],

where a laminar flow simulation was more appropriate.

This was dictated by practical considerations as well,

since in the specific problem which was the motivation

for this study, i.e., the solar still, both positive and

negative values of N are possible. It is typical of the

operation of the still in the morning hours that a temper-

ature-gradient inversion occurs, with the cover attaining

a higher temperature than the water in the basin [11]. In

this case, there is a negative DT and a positive DC thus a

negative N, while the value of DT is relatively small due

to the low levels of radiation during this period.

Therefore, this situation is also characterized by low

Rayleigh numbers, where laminar flow is more likely

to occur.
Fig. 6. Periodic behavior of the mid-point stream function with time,

6.0 · 106 (c) and 8.0 · 106 (d).
4.1. Assisting buoyancy forces

In this case, the two buoyancy forces involved simply

add up and this results in a flow field with no major

qualitative differences compared to the case with only

thermal buoyancy present [15] at the same thermal Ray-

leigh number. Thus, a flow field characterized by four

recirculating cells may be observed at Ra = 107 in Fig.

4 and by two major cells at Ra = 109 and Ra = 1010. A

small deviation occurs at Ra = 108, where three major

cells are present, as opposed to four in Ref. [15], after

the major clock-wise rotating cell (positive values of

W) has expanded to the right and the rightmost cell

has weakened significantly. It is interesting to note that

for RaP 109 the counter-clockwise rotating cell domi-

nates, which is a major difference compared to the flow

pattern at lower Rayliegh numbers. Quantitatively, there

is, as expected, an increase in the magnitude of the flow

quantities, such as Wmax, which increases by approxi-

mately 40% compared to the value with thermal buoy-

ancy only present at the respective value of Ra.

Likewise, the turbulent viscosity, which is plotted in

the right column of Fig. 4, increases by 30–40% over

the same range of Ra. In Fig. 5 the temperature (left)

and concentration fields (right) for the same Rayleigh

numbers are shown. They look very similar in form at
for N = �1 and laminar flow at Ra = 4.5 · 106 (a), 5.0 · 106 (b),
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this value of the Lewis number and, as in Ref. [15], at the

smaller values of Ra the distribution looks more uni-

form, but at higher values large constant-value regions

tend to develop at the core, with thinner boundary layers

along the solid surfaces.

4.2. Opposing buoyancy forces

In the case of opposing buoyancy forces, the produc-

tion of turbulence due to buoyancy forces is reduced due

to the fact that one of them acts in generating and the

other one in destroying turbulence. Therefore, the fact

that at both Ra = 107 and Ra = 108 early computations

using the turbulence model yielded a flow field with zero

values of the turbulence variables came to no surprise

and could be easily justified. Besides, at these values

the solution tends to become unsteady. It appears that

the flow at these values is in one of the transition states

characterizing the route to turbulence in natural convec-

tion problems, particularly those with heating from

below, as is very well-known from Rayleigh–Bénard

convection. It was therefore decided, before proceeding

to the higher end of values of Ra as considered for

N = 1, to first clarify the observations at the lower end

of values, by solving the unsteady laminar-flow equa-

tions coupled with the energy and concentration equa-
Fig. 7. Periodic behavior of the mean Nusselt and Sherwood number

Ra = 4.5 · 106 (a), 5.0 · 106 (b), 6.0 · 106 (c) and 8.0 · 106 (d).
tions. In this effort, it was also found necessary to

move backwards by reducing the value of Ra even lower

than Ra = 107, so that a good picture is obtained as to

where exactly the steady behavior ceases to exist being

succeeded by unsteady phenomena, typical of heating-

from-below configurations on one hand, but also of

double-diffusive convection problems with opposing

buoyancy forces on the other. It is not, however, the

intention in this work to fully cover the entire transi-

tion-range phenomena, but rather to locate the onset

of unsteadiness in laminar flow and then proceed to

the fully turbulent regime, as the objective originally

was to make comparisons against the cases with N = 1

and N = 0 [15]. The fully-turbulent regime, characterized

by a significant amount of turbulent viscosity, was found

to arise only for RaP 109 at N = �1 and the relevant

results will be presented in a later section.

4.2.1. Laminar flow—oscillatory results

The Rayleigh number was reduced by an order of

magnitude, compared to the case with N = 1, to

Ra = 106 and the solution that was obtained was found

to be steady, a state which was attained at s � 0.1. The

flow field is characterized by two strong recirculating

cells, with their dividing line intersecting the bottom sur-

face at Y � 0.42. By gradually increasing Ra to 2 · 106
at the bottom surface with time, for N = �1 and laminar flow at
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and 3 · 106 steady results are still obtained, with the

main cells always being two, and the leftmost one now

tilting to the right, even though the bottom surface is

still intersected at Y � 0.42. At Ra = 4 · 106, a small cell

at the top, just below the edge formed by the two in-

clined surfaces, makes its appearance in the steady state

results which are obtained after a transient period of

damped oscillations in the flow quantities. First at

Ra = 4.5 · 106 these oscillations are found to persist

even at large times and no steady state can be obtained.

Instead, there is a distinct periodic pattern, observed in

several quantities describing the flow field such as, for

instance, the midpoint stream function shown in Fig.

6. These oscillations become more intense at the bound-

ary between the leftmost main cell and the new small cell

that arises at the top. The oscillations are also present in

the mean Nusselt and Sherwood number variation with

time in Fig. 7, however the patterns for RaP 6 · 106 ap-

pear somewhat different. Power-spectrum analysis for all

variables, using 512 sample points, reveals nevertheless a

single dominant frequency and harmonics, a pattern

which persists for up to Ra = 2 · 107. The power-spec-

trum analysis for the time histories of Wmax of Fig. 6

has the form shown in Fig. 8. In Fig. 9 a typical flow

field within one cycle of the oscillations is shown, in

terms of stream function contours for Ra = 8 · 106 as
Fig. 8. Power spectrum density vs. frequency for the oscillations of

shown in Fig. 6.
a representative case. Two major recirculating cells are

found to almost maintain their position, but near the

top edge a smaller cell alternately makes its appearance

and vanishes. This behavior has an effect on the shape

and the magnitude of the main cells, even though mostly

limited to the top half of the enclosure. It can therefore

be concluded that the unsteadiness in the laminar flow

regime is due to an instability in the bulk of the flow

field, caused by the interaction between the major recir-

culating cells. The oscillations enter a more irregular

state beyond the value of Ra = 2 · 107, eventually turn-

ing into aperiodic, but the exact evolution from this

point to fully-turbulent flow is a subject whose investiga-

tion was considered outside the scope of this work.

In order to have an idea of what exactly the effect of

the trapezoidal geometry on the oscillatory phenomena

is, calculations were performed on an equivalent rectan-

gular domain, constructed so as to have an aspect ratio

equal to the present one, i.e., A = Hm/L = 0.3165, which

also yields the same cross-sectional area as the trapezo-

idal enclosure. Using the same resolution as in the lami-

nar computations for the trapezoidal geometry (i.e., an

61 · 61 non-uniform grid) and the same physical param-

eters, the solution that was obtained was of a steady

multi-cellular flow for up to Ra = 6 · 106. The main flow

pattern consisted of a total of six cells, two similar pairs
Wmid at N = �1, and Ra = 4.5–8 · 106, for the respective cases



Fig. 9. Computed streamlines at ten different time instants within a period, shown on the Wmid vs. dimensionless time curve for

N = �1, Ra = 8 · 106. Contour levels are from �6.4 to 6.4.

Fig. 10. Variation of the mid-point stream function with time, for N = �1 and turbulent flow at: (a) Ra = 1010, (b) Ra = 2.0 · 1010 and

(c) Ra = 3.0 · 1010.
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of counter-rotating inner cells and two end cells of larger

size, adjacent to each of the side walls. The wavelength

of the inner cells (based on the height of the enclosure)

was approximately equal to 0.9, a value which appears

very similar to the results obtained by Wee et al. [16],

also for opposing buoyancy forces and the same Lewis

number, in a horizontal cavity of aspect ratio 1/7 and

at Gr = 5.5 · 105. In the present case, some small corner

vortices did also appear near the top surface and grew in

size with increasing Ra, however this increase was not

significant so as to disturb the main cells until Ra in-

creased to Ra = 6.5 · 106. At this value, and at large

times (s P 0.1), an oscillatory pattern was obtained,

which however did not exhibit any distinct frequency

but was rather aperiodic. The number of cells was

changing constantly and symmetry was lost. The same

behavior was observed for up to Ra = 8 · 106 which

was the highest value considered. These preliminary
Fig. 11. Computed streamlines (left) and isoviscosity m�t lines (right) at
1010 (b), 2 · 1010 (c) and 3 · 1010 (d).
findings indicate that the rectangular geometry itself re-

quires a more thorough study which the present limited

space does not allow. It can nevertheless be already con-

cluded that the trapezoidal geometry has some own un-

ique features that distinguish it from an equivalent

rectangular geometry as far as the onset of unsteadiness

is concerned, and tends to transition to a regular peri-

odic regime earlier, boundary conditions and physical

parameters being kept otherwise the same between the

two geometries.

4.2.2. Turbulent flow results

First at Ra = 109 a significant amount of turbulent

viscosity develops, but the solution does not reach a

steady state even at large times, exhibiting irregular

oscillations. At Ra = 5 · 109 the oscillations become

more and more regular, even though still aperiodic,

while at Ra = 1010 a quasi-periodic pattern establishes,
large times for turbulent flow with N = �1 and Ra = 5 · 109 (a),
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after an initial transient period. This may be observed in

terms of the time histories of the midpoint stream func-

tion shown in Fig. 10. With an increase in the value of

Ra, the oscillations decrease in amplitude, until at

Ra = 3 · 1010 an almost steady state is attained within

a relatively short period of time. The corresponding

plots of the field variables are shown in Figs. 11 and

12, including those for Ra = 5 · 109, where instantane-

ous data are shown. As far as the flow field is concerned

(Fig. 11), two major flow cells are still visible, occupying

the middle part of the enclosure. However, comparing

this to the laminar-flow results, the major cells appear

now detached from the bottom surface, where there is

significant secondary flow activity. This may be related

to the horizontal motion of thermals near horizontal

boundaries, a phenomenon described in the study by

Chu and Goldstein [37], after their experimental obser-

vations of turbulent natural convection in a layer of
Fig. 12. Computed temperature (left) and concentration (right) conto

3 · 1010 (d). Twenty levels plotted between 0 and 1.
water. With the increase in the value of Ra, the bottom

cells become more stable and the solution leads to a stea-

dy state at Ra = 3 · 1010. At this value, there is a signif-

icant amount of turbulent viscosity, as shown on the

right part of Fig. 11, however much less in magnitude

than for N = 1, as may be observed by comparing the

values shown in Fig. 4.

The temperature and concentration fields in Fig. 12

exhibit a similar form, characterized by a stratification

pattern and appear less distorted than those of Fig. 5,

with no distinct plume-like regions. Some small distur-

bances may be observed at the left part of the bottom

surface for Ra = 5 · 109, indicative of the unsteadiness

that is still present and which gradually vanishes after-

wards. The unsteady behavior and its localized nature

may be better realized in Figs. 13 and 14. These are plots

of the time histories of the local horizontal velocity com-

ponent V and the temperature h, along the same grid line
urs at large times for Ra = 5 · 109 (a), 1010 (b) 2 · 1010 (c), and



Fig. 13. Oscillatory behavior of the horizontal velocity component for N = �1 and Ra = 1010–2 · 1010 at five different locations near

the right vertical wall with respective coordinates shown.

Fig. 14. Oscillatory behavior of the temperature for N = �1 and Ra = 1010–2 · 1010 at five different locations near the right vertical

wall with respective coordinates shown.
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Table 2

Correlation coefficients for the mean Nusselt and Sherwood

numbers in Eqs. (12) and (13)

Coefficient N = 0 N = 1 N = �1

a 0.418 0.528 0.088

b 0.326 0.326 0.308

c N/A 0.508 0.099

d N/A 0.324 0.297
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perpendicularly intersecting the bottom surface at

Y � 0.93 (near the right end wall, where the phenomena

were found to be more prominent) and extending up-

wards towards the right inclined surface. Five locations

with increasing vertical coordinate (X) are chosen along

this line and their coordinates are shown in Figs. 13 and

14. Interesting regular oscillating patterns may be ob-

served for the velocity in Fig. 13, for both Ra = 1010

and Ra = 2 · 1010, with amplitudes which vary with

height and frequencies which vary with the Rayleigh

number. The same may be also said of the temperature

in Fig. 14, although overall the amplitudes are smaller.

The fact that the amplitudes are larger near the bottom

surface constitutes good evidence that the phenomenon

relates to the Chu and Goldstein observations [37] of

horizontal motion of thermals in that location, further

enhanced by the fact that here these thermals appear

to originate at fixed locations, exactly as stated in Ref.

[37]. However, in the present case the double-diffusive ef-

fects play a dominant role, since this unsteady behavior

occurs only for N = �1. In the turbulent-flow case with

opposing buoyancies, therefore, and compared to the

laminar flow results presented earlier with its relatively

large-scale unsteady phenomena, it can be concluded

that the unsteadiness is due to release and horizontal

movement of thermals at specific locations along the

bottom surface, having thus a more localized character.
Fig. 15. Variation of selected quantities with Ram for various values o

(b) and mean values along the bottom surface of the Nusselt (c) and
4.3. Global flow quantities—heat and mass transfer results

In Fig. 15 some global, characteristic quantities are

plotted as a function of the Rayleigh number Ram which

is based on the mean height of the enclosure. Results for

three different values of the buoyancy ratio can be com-

pared, N = 0 from Ref. [15], N = �1 and N = 1 from the

present study. The flow quantities Wmax and m�t max are

shown to follow the same rate of increase with Ram
for N = 0 and N = 1, even though the magnitude for

N = 1 is, as expected, higher. The kink in the m�t max curve,

due to the flow-pattern transition and the change in the

number of flow cells, is also evident in both cases. For

N = �1 on the other hand, the values and the overall

behavior are much different, due to the fact that the

two buoyancy forces act against one another and the

turbulent regime sets in much later. The same pattern
f N: maximum value of stream function W (a), viscosity ratio m�t
the Sherwood number (d).



Table 3

Comparison between cases with N = 1 and N = 0 in terms of selected quantities in turbulent flow

Quantity N = 1 N = 0 % Difference N = 1 N = 0 % Difference

Ra 5.000E+09 1.000E+10 – 1.000E+10 2.000E+10 –

Ram 1.585E+08 3.170E+08 – 3.170E+08 6.341E+08 –

Nub 252.33 252.19 0.06 310.13 311.07 0.30

Wmax 2483.73 2458.30 1.02 3439.24 3410.70 0.83

Wmid �1955.00 �1944.70 0.53 �2651.90 �2653.20 0.05

Vmax 29,268.51 28,979.00 0.99 41,067.13 40,710.73 0.87

Umax 19,308.24 19,079.43 1.19 27,549.14 27,179.66 1.34

Kmax · 10�6 87.806 85.998 2.06 180.200 176.940 1.81

m�t max 230.16 226.32 1.67 308.23 305.54 0.87

�max · 10�12 85.320 83.381 2.27 223.100 217.030 2.72
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is observed when comparing the mean values expressing

the heat and mass transfer, i.e., the Nusselt and the Sher-

wood number along the bottom surface. The values

computed for Nu and Sh may be correlated as follows:

Nu ¼ a� ðRamÞb; ð12Þ

Sh ¼ c� ðRamÞd ; ð13Þ

where a, b, c and d factors to be determined. The values

that arise in the fully turbulent regime, are shown in

Table 2. As may be observed, the exponent in Eq. (12)

for N = 0 and N = 1 is identical and only the multiplying

factor a differs. This is consistent with the observation

that in the two cases the flow and temperature fields

are qualitatively similar (Figs. 4 and 5 and [15]). For

N = �1 on the other hand, the exponent is somewhat re-

duced and the coefficient a changes dramatically. The

correlation for the Sherwood number has an exponent

reduced by roughly 3.8% compared to that for the Nus-

selt number at N = 1 and by 3.6% at N = �1, a discrep-

ancy due to the Lewis number effect.

For N = 1 in particular, another way of evaluating the

Lewis number effect is to compare results for a specific

value of the Rayleigh number Ra with double diffusion

present against those for thermal buoyancy alone, i.e.,

N = 0, at twice the value of Ra. Such comparisons can

be made, for instance, for turbulent flow at Ra = 5 · 109

and 1010 in the former case, and Ra = 1010 and 2 · 1010

respectively in the latter case. The comparisons in terms

of selected global quantities are shown in Table 3. The dif-

ferences that arise for the present value of the Lewis num-

ber (Le = 0.86) in this range of Ra appear to be small,

varying up to a maximum of 1.5% for the main flow quan-

tities and 2.7% for the turbulence quantities, while the ef-

fect on the mean Nusselt number at the bottom is less

than 0.3%.

5. Conclusions

The double-diffusive natural convection in an asym-

metric trapezoidal enclosure with vertical temperature
and concentration gradiens has been studied numeri-

cally, for both opposing and assisting buoyancy forces

(N = �1 and N = 1). The fluid mixture was humid air

and mostly turbulent flow conditions were present. Com-

pared to the results with N = 0 of a previous study, the

case with N = 1 in the range 107 6 1010 gave a qualita-

tively almost identical multi-cellular flow structure at

the same respective Rayleigh number, albeit with higher

heat and mass transfer rates and intensity of recircula-

tion. For N = �1, the phenomena are more complex,

since the mutually opposing action of the two buoyancy

forces leads to a delayed transition to turbulent flow so

that at Ra = 107 the flow is still laminar, but in a periodic

oscillatory state, characterized by a single dominant fre-

quency. This unsteadiness sets in at Ra � 4.5 · 106 and

persists for up to Ra � 2 · 107. Beyond this value the

flow becomes gradually aperiodic. In the fully turbulent

regime, unsteadiness of a different nature is also ob-

served, with a quasi-periodic behavior but having a more

localized effect, particularly evident along the bottom

surface. From the above can be inferred that the unstead-

iness in the laminar-flow regime is due to interactions be-

tween the main flow cells affecting the bulk of the

enclosure, whereas in the turbulent flow regime due to

thermal release and motion along the bottom surface.
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